Welcome to Schoolngr.com

Home   School   News   C B T   Classroom
Friday, 22 November 2024

RegisterLogin

Waec Mathematics 2017 Past Questions and Answers

Exam year:
Question type:
Topics:

Waec 2017 Mathematics Past Questions

Question 56:


(a) A manufacturing company requires 3 hours of direct labour to process N87.00 worth of raw materials. If the company uses N30,450.00 worth of raw materials, what amount should it budget at N18.25 per hour?
(b) An investor invested Nx in bank M at the rate of 6% simple interest per annum and Ny in bank N at the rate of 8% simple interest per annum. If a total of N8,000,000.00 was invested in the two banks and the investor received a total of N2,320,000.00 as interest from the two banks after 4 years, calculate the:
(i) values of x and y
(ii) interest paid by the second bank.



Question 57:


(a) Copy and complete the table of values for the equation \(y = 2x^{2} - 7x - 9\) for \(-3 \leq x \leq 6\).
x -3 -2 -1 0 1 2 3 4 5 6
y 13 -9 -14 -12 6



(b) Using scales of 2cm to 1 unit on the x- axis and 2cm to 4 units on the y- axis, draw the graphs of \(y = 2x^{2} - 7x - 9\) for \(-3 \leq x \leq 6\).
(c) Use the graph to estimate the :
(i) roots of the equation \(2x^{2} - 7x = 26\);
(ii) coordinates of the minimum point of y;
(iii) range of values for which \(2x^{2} - 7x < 9\).



Question 58:


Marks 1 2 3 4 5
Number of students m + 2 m - 1 2m - 3 m + 5 3m - 4



The table shows the distribution of marks scored by some students in a test.
(a) If the mean mark is \(3\frac{6}{23}\), find the value of m.
(b) Find the : (i) interquartile range
(ii) probability of selecting a student who scored at least 4 marks in the test.



Question 59:


(a) PQ is a tangent to a circle RST at the point S. PRT is a straight line, < TPS = 34° and < TSQ = 65°.
(i) Illustrate the information in a diagram; (ii) find the value of : (a) < RTS ; (b) < SRP.
(b)
In the diagram, /VZ/ = /YZ/, < YXZ = 20° and < ZVY = 52°. Calculate the size of < WYZ.



Question 60:


(a) Given that \(\sin x = \frac{5}{13}, 0° < x < 90°\), find \(\frac{\cos x - 2\sin x}{2\tan x}\).
(b) A ladder, LA, leans against a vertical pole at a point L which is 9.6metres above the groung. Another ladder, LB, 12 metres long, leans on the opposite side of the pole and at the same point L. If A and B are 10 metres apart and on the same straight line as the foot of the pole, calculate, correct to 2 significant figures, the :
(i) length of ladder LA (ii) angle which LA makes with the ground.







AboutContact usBack to Top
...

Disclaimer
All Views, Names, Acronyms, Trademarks, Expressed on this website are those of their respective owners. Please note that www.schoolngr.com is not affiliated with any of the institutions featured in this website. It is always recommended to visit an institutions or sources official website for more information. In the same vein, all comments placed here do not represent the opinion of schoolngr.com


SCHOOLNGR - © 2020 - 2024 - Tayo Hammed | Terms Of Service | Copyright | Privacy Policy