Dry air of column length \(10 cm\) is trapped by a pellet mercury of length \(15 cm\), with the open cnd uppermost. When the capillary tube is inverted the length of the air column increased to \(25 cm\) while that of mercury remained constant. Calculate the atmospheric pressure (in \(cm\) of \(Hg\) )
A. \(35 cmHg\) B. \(15 cmHg\) C. \(20 cmHg\) D. \(10 cmHg\)
Correct Answer: A
Explanation
First, we draw the free body diagram i.e. When open end is uppermost In this position. the trapped air is under a total pressure \(P_{1}\) Given as; \(P_{1}=P_{\text {stm }}+\) pressure due to \(15 cmHg\) \(V_{1}=A_{1} /\) When column is inverted In this positisn. trapped air is under a total pressure.iven as: \(P_{s}=P_{\text {ins }}\) Prssure due to \(15 cmHg\) \(1=13=13\)y Boyle'sliw. \(P l^{\prime}=\) constant i.e. \(P_{1} V_{1}=P_{2} V_{2}\) \(P_{1} A_{1} l_{1}=P_{2} A_{2} l_{2}\left(A_{1}=A_{2}\right.\) since tube is uniform) \(P_{1} l_{1}=P_{2} I_{2} \ldots \ldots(1)\) We substitute \(P_{1}\) and \(P_{2}\) respectively into (1) \(\left(P_{\text {atm }}+15\right) \times 10=\left(P_{\text {atm }}-15\right) \times 25\) \(10 P_{\text {atm }}+150=25 P_{ atm }-375\) \(525=15 P_{\text {at }}\) \(P_{\text {atm }}=525 / 15=35 cmHg\) Note: when tube or column is in the horizontal position, the trapped air is under a total pressure equal to the atmospheric pressure i.e. \(P=P_{\text {atm }}\)