\(6000 J\) of heat is delivered to \(10 g\) of dry ice at \(0^{\circ} C\). What is the final temperature if the container has a heat capacity of \(20 J / k\) ? [specific heat of water \(=4200 J / kg . k\), latent heat of fusion of ice ____________ \(\left.=3.33 \times 10^{5} J / kg \right]
A. \(142 .9^{\circ} C\) B. \(63.6^{\circ} C\) C. 43. \(0^{\circ} C\) D. \(0^{\circ} C\)
Correct Answer: C
Explanation
Heat required to melt the ice completely at \(0^{\circ} C +\) heat absorbed by the container + heat required to raise the temperature of water and the container heat delivered i.e. \(M l_{ f }+ M _{ rec } C _{ ice } \Delta \theta+ M _{ c } C _{ c } \Delta \theta\) \(=\) heat delivered \(C _{\text {ice }}=\) S.H.C of ice, Mice \(=\) mass of ice \(=0.01 kg\) \(I_{f}=\) S.L H of ice also \(M _{c} \Delta \theta= C \Delta \theta=20 \times \Delta \theta\), we substitute these values \(600=0.01 \times 3.33 \times 10^{5}+0.01 \times 4200 \times(\theta-0)+20(\theta-0)\) \(6000=3330+42 \theta+20 \theta\) \(2670=62 \theta, \theta=43.06^{\circ} C \approx 43^{\circ} C\)