Two forces \(\vec{A}\) and \(\vec{B}\) act on an object. The angle between the forces is \(60^{\circ}\). The magnitude of \(\vec{A}\) is \(15 N\) while the resultant of the two vectors has a magnitude of \(18 N\). What is the magnitude of vector \(\vec{B}\) ?
A. \(3.00\) N B. \(4.96\) N C. \(9.95\) N D. \(39.9 N\)
Correct Answer: B
Explanation
The statement is represented diagrammatically as; Using cosine rule, we have \(R 2=\overline{A^{2}}+\overline{B^{2}}-2 \overrightarrow{A B} \cos \theta\) \(18^{2}=15^{2}+B^{2}-2 \times 15 \times B \cos 120\) \(18^{2}-15^{2}=B^{2}-30 B \times-\frac{1}{2}\) \(99=B^{2}+15 B\) \(B^{2}+15 B-99=0\) Using the formula method \begin{aligned} &B=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ &=\frac{-15 \pm \sqrt{15^{2}-4 \times(-99)}}{2 \times 1} \end{aligned} \begin{aligned} &=\frac{-15 \pm \sqrt{225+396}}{2} \\ &B=\frac{-15 \pm \sqrt{621}}{2} \\ &B=\frac{-15 \pm 24.92}{2}= \\ &B=\frac{-15+24.92}{2}=\frac{9.92}{2} \\ &\therefore B=4.96 N \end{aligned}