\(A 50 g\) ice at \(-10^{\circ} C\) gradually tums to water at \(25^{\circ} C\). How much heat is consumed in the process? Given that the specific heat capacity of ice \(=2100 Jkg ^{-1} k ^{-1}\) and latent heat of fusion of ice \(=3.34 \times 10^{5} Jkg ^{-1}\), specific heat capacity of water \(=4200 Jkg ^{-1} \)
A. \(20 kJ\) B. \(33 kJ\) C. \(23 kJ\) D. \(28 kJ\)
Correct Answer: C
Explanation
23 kJ given: \(m _{\text {ice }}=50 g =0.05 kg\) \(l_{\text {ice }}=3.34 \times 10^{5} Jkg ^{-1}\) \(c_{\text {ice }}=2100 Jkg ^{-} k ^{-1}\) \(c_{ w }=4200 Jkg ^{-1}\) it is important, note that the required process involves three stages: Stage 1 warming up of icc \(-5^{\circ} C\) to ice at \(0^{\circ} C\) i.e. ice at \(-5^{\circ} C\) wi ns up to ice at \(0^{\circ} C\) heat \(q _{1}= m _{\text {cec }} c _{\text {ice }} \Delta \theta\) \(q_{1}=0.05 \times 2100 \quad[0-(-10)]\) \(=0.05 \times 2100 \cdot 10\) \(q_{1}=1050 J\) Stage 2 - melting of ice at \(0^{\circ} C\) to water at \(0^{\circ} C\) (change of statc) heat \(q_{2}=m l_{ f }\) \(q_{2}=0.05 \times 3.34 \times 10^{5}\) \(q_{2}=16700 J\) Stage 3 warming up water at \(0^{\circ} C\) to water at \(25^{\circ} C\) \(\left( NB m_{\text {ice }}=m_{\text {water }}\right)\) heat \(q_{3}=m_{ w } c_{ w } \Delta \theta\) \(=0.05 \times 4200(25-0)\) \(=0.05 \times 4200 \times 25\) \(=5,250 J\) \(\therefore\) Total heat consumed \(Q=7_{1}+q_{2}+q_{3}\) \(=1950 J +16700 J +5,250 J\) \(=23,000 J =23 kJ\)