Given that the mass of a metal is \(3.6 kg\) and its density is \(9000 kg / m ^{3}\). Calculate the reading on the spring balance when immersed in water
A. \(36 N\) B. \(32 N\) C. \(40 N\) D. \(3.2 N\)
Correct Answer: B
Explanation
Normal weight of the metal \(=(3.6 \times 10) N =36 N\) $$ \begin{gathered} \text { Volume }(V) \text { of metal }=\frac{\text { mass }}{\text { density }} \\ =\left(\frac{3.6}{9000}\right) m ^{3} . \end{gathered} $$ Upthrust \(=\rho V g\) $$ =1000 \times \frac{3.6}{9000} \times 10=4 N $$ Reading of the spring balance when immersed in water (apparent weight in water) \(=36 N -4 N =32 N\)