The spiral spring of a spring balance is \(25.0 cm\) long when \(5 N\) hangs on it and \(30.0 cm\) long, when the weight is \(10 N\). What is the length of the spring, if the weight is \(3 N\) assuming Hooke's Law is obeyed?
A. \(15.0 cm\) B. \(17.0 cm\) C. \(20.0 cm\) D. \(23.0 cm\)
Correct Answer: D
Explanation
By Hooke's law, \(k=\frac{F}{e}\) \(\frac{F_{1}}{e_{1}}=\frac{F_{2}}{e_{2}}\) \(\frac{5}{25-l_{a}}=\frac{10}{30-l_{a}}\) \begin{aligned} \frac{1}{25-l_{o}} &=\frac{2}{30-l_{o}} \\ 30-l_{o} &=2\left(25-l_{o}\right) \\ 30-l_{o} &=50-2 l_{o} \\ -l_{o}+2 l_{o} &=50-30 \\ l_{o} &=20 cm \\ \text { when } F &=3 N \\ \frac{5}{25-l_{o}} &=\frac{3}{x-l_{o}} \\ \frac{5}{25-20} &=\frac{3}{x-20} \\ \frac{5}{5} &=\frac{3}{x-20} \\ 1 &=\frac{3}{x-20} \\ x &=3+20=23 cm . \end{aligned}