A pin at the bottom of a beaker filled with water appeared to be elevated when viewed from the top of the beaker: Calculate the displacement of the pin from the bottom of the beaker, if the beaker is filled to \(8.0 cm\) height and the refractive index of water is \(4 / 3\).
A. \(6.0 cm\) B. \(2.0 cm\) C. \(3.0\) cm D. \(4.0 cm\)
Correct Answer: B
Explanation
Correlating equation \begin{aligned} &\eta=\frac{\text { real depth }}{\text { apparent depth }} \\ &\text { apparent dept }=\frac{\text { real dept }}{\eta} \\ &=\frac{8}{4 / 3}=\frac{8 \times 3}{4}=6 cm \\ &\text { displacement } \\ &=\text { real depth }-\text { apparent dept } \\ &=8 cm -6 cm =2 cm \end{aligned}