The dimension of universal gravitational constant is..........?
A. \( MÂ^{–1}L^3 T^{–2} \) B. ML3T2 C. ML3 D. MLT-2
Correct Answer: A
Explanation
f α (MM ÷g2) F(GMM ÷ r2) [G – gravitational constant] GMM = Fr2 G = F02 ÷ MM = m × aÏ€r2 ÷ MM (f = ma) = (m × m5-2 × r2) ÷ MM = (Kg.m52 × m2) ÷ Kg.Kg =1 ÷ kg.m3.52 The dimension mathematically representation have a quantities of M, L AND T M (Mass) = kg, L (Length) = M, T (Time) second G = kg-1 m2.52(Using dimension rule) M-1.L3.T-2 ∴ The universal gravitational constant (G) =\( MÂ^{–1}L^3 T^{–2} \)