The expression \(a^{3}+b^{3}\) is equal to ____________
A. \(\left(a^{2}+b\right)\left(a-a b+b^{2}\right) \quad\) B. \((a+b)\left(a^{2}-a b+b^{2}\right) \quad\) C. \(\left(a-b^{2}\right)\left(a^{2}-a b+b^{2}\right)\) D. \((a-b)\left(a^{2}+a b+b^{2}\right)\)
Correct Answer: B
Explanation
\((a+b):=(a+b)(a+b)^{2}\) \(=\left(a^{+}+b\right)\left(a^{2}+2 a b+b^{2}\right)=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}\) we factorise out \(3 a b\) and transfer to the other side of the equality sign i.e. \(\Rightarrow(a+b)^{i}-3 a b(a+b)=a^{3}+b^{3}\) but \((a+b):=(a+b)\left(a^{2}+2 a b+b^{2}\right)\) \(a^{2}+b^{2}=(a+b)\left(a^{2}+2 a b+b^{2}\right)-3 a b(a+b)\) \(a^{2}+b^{2}=(a+b)\left[a^{2}+b^{2}+2 a b-3 a b\right]\)