The circle \(2 x^{2}+2\left(y-\frac{3}{2}\right)^{-}=2\) has centre and radius respectively as ____________
A. \(\left(0 . \frac{3}{2}\right)\) and 2 B. \(\left(0 . \frac{-3}{2}\right)\) and 1 C. \(\left(\frac{3}{2} \cdot 0\right)\) and 2 D. \(\left(0, \frac{3}{2}\right)\) and 1
Correct Answer: B
Explanation
We express the given circle \(2 x^{2}+2\left(y-\frac{3}{2}\right)^{2}=2\) in the form \((x-a)^{2}+(y-b)^{2}=r^{2} \ldots \ldots .(1)\) \((x-a)^{2}+(y-b)^{2}=r^{2} \ldots \ldots \ldots .\) \((a . b)\) as centre and radius \(r\) \(2 x^{2}+2\left(x-\frac{3}{2}\right)^{2}=2\) We divide through by 2 \(x^{2}+\left(y-\frac{3}{2}\right)^{2}=1\) this is the same as \((x+0)^{2}+\left(y-\frac{3}{2}\right)^{2}=12\)omparing (1) and (2) \(a=0 . b=-\frac{3}{2} \cdot r=1\) \(\Rightarrow\left(0,-\frac{3}{2}\right)\) and 1