The circle \(2 x^{2}+2\left(y-\frac{3}{2}\right)^{2}=2\) has centre and radius respectively as ____________
A. \(\left(0, \frac{3}{2}\right)\) and 2 B. \(\left(0, \frac{-3}{2}\right)\) and 1 C. \(\left(\frac{3}{2} .0\right)\) and \(2\) D. \(\left(0, \frac{3}{2}\right)\) and 1
Correct Answer: B
Explanation
\( \int_{0}^{\frac{\pi}{2}}(2 \pi+2 \cos 2 x) d x \) we split this into sum of integrals i.e \( \int_{0}^{\frac{\pi}{2}} 2 \pi+\int_{0}^{\frac{\pi}{2}} 2 \cos 2 x d x|2 \pi x|_{10}^{+}+\left.2 \cdot \frac{\sin 2 x}{2}\right|_{0} ^{\frac{\pi}{2}} \) We subtract the lower limit from the upper limit \(2 \pi(\pi / 2)-2 \pi(0)+\sin 2(\pi / 2)-\sin 2(0)\) \(\pi^{2}-0+\sin \pi-0=\pi^{2}+\sin \pi \) but \(\sin \pi=0\). \(\pi^{2}+\sin \pi=\pi^{2}\)