if \(\alpha\) and \(\beta\) are the roots of equation \(c x^{2}+a x+b=0\), find \(\alpha \beta\)
A. \(-\frac{b}{a}\) B. \(-\frac{a}{c}\) C. \(\frac{b}{c}\) D. \(\frac{c}{a}\)
Correct Answer: C
Explanation
for the equation. \(c x^{2}+a x+b=0\) the quadratic coefficients are \(a=c . b=a . c=b\) if \(\alpha\) and \(\beta\) are the roots of equation then. sum of roots \(=\frac{-b}{a} \alpha+\beta=\frac{-a}{c}\) product of root \(\alpha \beta=\frac{c}{a}=\frac{b}{c}\)lternatively. let \(x=\alpha . x=\beta\) \((x-\alpha)(x-\beta)=0\) \(x^{2}-(\alpha+\beta) x+\alpha \beta=0\) Now. \(x^{2}+\frac{a}{c} x+\frac{b}{c}=0 \ldots \ldots \ldots\) (ii) comparing (a) and (ii). \(A \beta=\frac{b}{c}\)