What is the addition of \(y\) and \(x\)-intercepts of the line \(\frac{2}{3} x+\frac{3}{2} y+9=0 ?\)
A. -19.5 B. 19.5 C. 20.5 D. -20.5
Correct Answer: A
Explanation
\(\frac{2 x}{3}+\frac{31}{2}+9=0\) We arrange the equation in the form \(\frac{x}{t}+\frac{1}{b}=1\) where \(u\) and \(b\) are the intercepts on the \(x\) and \(u\) - avis thus: \(\frac{21}{3}+\frac{31}{2}-9=0\) dividing through by \(-9\). we have. \(\frac{x}{\frac{3}{2} x-9}+\frac{y}{\frac{2}{3} x-9}=\frac{-9}{-9}\) Now we compare with \begin{aligned} \frac{x}{a}+\frac{y}{b} &=\left(a=\frac{-27}{2}, b=-6\right) \\ a+b &=\frac{-27}{2}+(-6) \\ &=\frac{-27}{2}-6 \\ &=\frac{-39}{2}=-19.5 \end{aligned}