Find the values of \(x\) and \(y\) respectively if \(\left(\begin{array}{cc}3 & -4 \\ 5 & 7\end{array}\right)\left(\begin{array}{l}x \\ y\end{array}\right)=\left(\begin{array}{c}10 \\ 3\end{array}\right)\)
A. 2,-1 B. -1,2 C. 2,1 D. 1,2
Correct Answer: A
Explanation
The key idea here is to multiply the L.H.S. matrices and equate to the R.H.S, thereafter we solve the simultaneous equations so formed in \(x\) and \(y\).y matrix multiplication, \begin{aligned} \left(\begin{array}{c} 3(x)+(-4)(y) \\ 5(x)+7 y \end{array}\right) &=\left(\begin{array}{c} 10 \\ 3 \end{array}\right) \\ \left(\begin{array}{l} 3 x-4 y \\ 5 x+7 y \end{array}\right) &=\left(\begin{array}{c} 10 \\ 3 \end{array}\right) \end{aligned} by matrix equality, we equate the entries of the matrix of the L.H.S and that of the R.H.S i.e. \(3 x-4 y=10\) \(5 x+7 y=3\) Using elimination method; first to obtain \(y\), we eliminate \(x\) by multiplying equation (1) by 5 and (2) by 3 to become \begin{aligned} 15 x-20 y=50 \\ -15 x+21 y=9 \\ -41 y=41 \\ y=& \frac{-41}{41}=-1 \end{aligned} and solving for \(x\) we substitute \(y=-1\) into (1) \begin{array}{l} 3 x-4(-1)=10 \\ 3 x+4=10 \\ 3 x=10-4=6 \\ 3 x=6 ; x=2 \\ \therefore x=2, y=-1 \end{array}