If the angle of a sector of a circle of radius \(4.2 \mathrm{~cm}\) is \(150^{\circ}\). What is the perimeter of the sector? (Take \(\pi=22 / 7\) )
A. \(11 \mathrm{~cm}\) B. \(15.2 \mathrm{~cm}\) C. \(16.8 \mathrm{~cm}\) D. \(19.4 \mathrm{~cm}\)
Correct Answer: D
Explanation
\(19.4 \mathrm{~cm}\) The perimeter of a sector is the sum of the length of the arc and the two radii of the circle i.e. \(P=l+2 r\) where \(l=\frac{\theta}{360} \times 2 \pi r\) \begin{aligned} l &=\frac{150}{360} \times 2 \times \frac{22}{7} \times 4.2 \\ l &=\frac{150}{360} \times 2 \times \frac{22}{7} \times 4.2 \\ l &=\frac{27,720}{2520}=11 \mathrm{~cm} \\ & \therefore p=2 \times 4.2+11=19.4 \mathrm{~cm} \end{aligned}