A circle has its centre on the \(x\)-axis and passes through (1. 2) and \((3,2)\), find its equation.
A. \(x^{2}+y^{2}-4 x-1=0\) B. \(x^{2}\) \(+y^{2}+4 x+1=0\) C. \(x^{2}+y^{2}-1=0\) D. \(x^{2}+y^{2}-4 x+1=0\)
Correct Answer: A
Explanation
Since the centre of the circle is on the \(x\)-axis, let this centre be \((a . b)\). On the \(x\)-axis. \(y=0\). so \(h=0\) \(\Rightarrow(a . b)=(a \cdot o)\) \(|O A|=|O B|\) radii by distance between two points \begin{array}{l} |O A|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\ |O A|=\sqrt{(1-a)^{2}+(2-0)^{2}} \\ |O A|=\sqrt{(1-a)^{2}+4} \end{array} Similarly \(/ O B /\) \begin{array}{l} =\sqrt{(3-a)^{2}+(2-0)^{2}} \\ =\sqrt{(3-a)^{2}+4} \\ \Rightarrow|O A|=|O B| \\ \Rightarrow \sqrt{(1-a)^{2}+4}=\sqrt{(3-a)^{2}+4} \end{array} Square both sides \begin{array}{l} (1-a)^{2}+A=(3-a)^{2}+A \\ 1-2 a+ ot h^{2}=9-6 a+ ot f^{2} \\ -2 a+6 a=9-1 \\ 4 a=8 \\ a=\frac{8}{4}=2 \end{array} so. the centre is \((2.0)\) and the radius \(r\) \begin{array}{l} r=|\mathrm{OA}|=\sqrt{(1-2)^{2}+4} \\ r=\sqrt{(-1)^{2}+4}=\sqrt{5} \text { and } r^{2}=5 \end{array} the equation of a circle with centre \((a, b)=(2.0)\) and radius \(r\) is given by \begin{array}{l} (x-a)^{2}+(y-b)^{2}=r^{2} \\ (x-2) 2+(y-0)^{2}=5 \\ x^{2}-4 x+4+y^{2}=5 \\ x^{2}+y^{2}-4 x+4-5=0 \\ x^{2}+y^{2}-4 x-1=0 \end{array}