The indefinite integral of the function \(f(x)=x \cos x\) for any constant \(k\). is
A. \(-\cos x+\sin x+k\) B. \(x \sin x-\cos x\) C. \(x \sin x\) for any constant k D. \(x+\sin x+\cos x+k\)
Correct Answer: C
Explanation
This is integration by parts. \(\int f(x)=\int x \cos x d x\) \(let \(n=x: \frac{d u}{d x}=1 \Rightarrow d u=d\) let \(d=\cos x d=\cos x d x\) \(v=\int \cos x d x=\sin x\) Using integration by part technique. i.e. \begin{aligned} &\int u d v=w-\int v d u \\ &\int x \cos x=x \sin x-\int \sin x d x \\ &=x \sin x-(-\cos x)+k \\ &=x \sin x+\cos x+k \end{aligned}