Find the values of x and y respectively if
\(\begin{pmatrix} 1 & 0 \\ -1 & -1\\ 2 & 2 \end{pmatrix}\) + \(\begin{pmatrix} x & 1 \\ -1 & 0\\ y & -2 \end{pmatrix}\) = \(\begin{pmatrix} -2 & 1 \\ -2 & -1\\ -3 & 0 \end{pmatrix}\)
A. -3, -2
B. -5, -3
C. -2, -5
D. -3, -5
Correct Answer: D
Explanation
\(\begin{pmatrix} 1 & 0 \\ -1 & -1\\ 2 & 2 \end{pmatrix}\) + \(\begin{pmatrix} x & 1 \\ -1 & 0\\ y & -2 \end{pmatrix}\) = \(\begin{pmatrix} -2 & 1 \\ -2 & -1\\ -3 & 0 \end{pmatrix}\)
therefore, (x, y) = (-3, -5) respectively