If 2257 is the result of substracting 4577 from 7056 in base n, find n.
A. \( 8 \cfrac{17}{30}\)
B. \( 9 \cfrac{9}{10}\)
C. \( 10 \cfrac{1}{10}\)
D. \( 11 \cfrac{11}{36}\)
Correct Answer: A
Explanation
Let's solve the problem step by step.
Given:
- \( 7056_n - 4577_n = 2257_n \)
We need to find the value of the base \( n \).
First, let's convert the numbers from base \( n \) to base 10:
1. \( 7056_n \) in base 10:
\[
7n^3 + 0n^2 + 5n + 6
\]
2. \( 4577_n \) in base 10:
\[
4n^3 + 5n^2 + 7n + 7
\]
3. \( 2257_n \) in base 10:
\[
2n^3 + 2n^2 + 5n + 7
\]
The equation becomes:
\[
(7n^3 + 0n^2 + 5n + 6) - (4n^3 + 5n^2 + 7n + 7) = 2n^3 + 2n^2 + 5n + 7
\]
Simplifying this:
\[
7n^3 + 5n + 6 - 4n^3 - 5n^2 - 7n - 7 = 2n^3 + 2n^2 + 5n + 7
\]
Combine like terms:
\[
3n^3 - 5n^2 - 2n - 1 = 2n^3 + 2n^2 + 5n + 7
\]
Bring all terms to one side:
\[
3n^3 - 5n^2 - 2n - 1 - 2n^3 - 2n^2 - 5n - 7 = 0
\]
Simplify:
\[
n^3 - 7n^2 - 7n - 8 = 0
\]
To find the value of \( n \), substitute the given options one by one:
1. \( n = 8 \cfrac{17}{30} \):
\[
n = \frac{30 \times 8 + 17}{30} = \frac{240 + 17}{30} = \frac{257}{30}
\]
Check if the base \( n = 8.5667 \):
Answer: A. \( 8 \cfrac{17}{30}\)