Simplify \( 3 \cfrac{1}{3} - 1 \cfrac{1}{4} \times \cfrac{2}{3} + 1 \cfrac{2}{5}\)
Explanation
To simplify the expression \( 3 \frac{1}{3} - 1 \frac{1}{4} \times \frac{2}{3} + 1 \frac{2}{5} \), follow these steps:
1. Convert mixed numbers to improper fractions:
- \( 3 \frac{1}{3} \):
\[
3 \frac{1}{3} = \frac{3 \times 3 + 1}{3} = \frac{10}{3}
\]
- \( 1 \frac{1}{4} \):
\[
1 \frac{1}{4} = \frac{1 \times 4 + 1}{4} = \frac{5}{4}
\]
- \( 1 \frac{2}{5} \):
\[
1 \frac{2}{5} = \frac{1 \times 5 + 2}{5} = \frac{7}{5}
\]
2. Perform the multiplication:
Multiply \( 1 \frac{1}{4} \times \frac{2}{3} \):
\[
\frac{5}{4} \times \frac{2}{3} = \frac{5 \times 2}{4 \times 3} = \frac{10}{12} = \frac{5}{6}
\]
3. Substitute back into the expression:
The expression becomes:
\[
\frac{10}{3} - \frac{5}{6} + \frac{7}{5}
\]
4. Find a common denominator for the fractions:
The least common multiple of 3, 6, and 5 is 30.
- Convert \( \frac{10}{3} \):
\[
\frac{10}{3} = \frac{10 \times 10}{3 \times 10} = \frac{100}{30}
\]
- Convert \( \frac{5}{6} \):
\[
\frac{5}{6} = \frac{5 \times 5}{6 \times 5} = \frac{25}{30}
\]
- Convert \( \frac{7}{5} \):
\[
\frac{7}{5} = \frac{7 \times 6}{5 \times 6} = \frac{42}{30}
\]
5. Combine the fractions:
\[
\frac{100}{30} - \frac{25}{30} + \frac{42}{30} = \frac{100 - 25 + 42}{30} = \frac{117}{30} = 3 \frac{27}{30}
\]
Simplify \( \frac{27}{30} \):
\[
\frac{27}{30} = \frac{9}{10}
\]
So:
\[
3 \frac{9}{10} = 3.9
\]
Thus, the closest answer is:
C. 4