Determine x + y if \(\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix}\) \(\begin{pmatrix} x \\ y \end{pmatrix}\) = \(\begin{pmatrix}-1 \\ 8 \end{pmatrix}\)
A. 3
B. 4
C. 7
D. 12
Show Answer Show Explanation Correct Answer: C Explanation \(\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}\) \(\begin{pmatrix} 2x - 3y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}\) \(2x - 3y = -1 ... (i)\) \(-x + 4y = 8 ... (ii)\) From (ii), x = 4y - 8. \(2(4y - 8) - 3y = -1 \implies 8y - 16 - 3y = -1\) \(5y = -1 + 16 = 15 \implies y = 3\) \(x = 4(3) - 8 = 12 - 8 = 4\) \(\therefore x + y = 3 + 4 = 7\)