If x is positive real number, find the range of values for which \(\frac{1}{3}\)x + \(\frac{1}{2}\) > \(\frac{1}{4}\)x
Explanation
\(\frac{1}{3x}\) + \(\frac{1}{2}\)x = \(\frac{2 + 3x}{6x}\) > \(\frac{1}{4x}\)
= 4(2 + 3x) > 6x = 12x\(^2\) - 2x = 0
= 2x(6x - 1) > 0 = x(6x - 1) > 0
ase 1 (-, -) = x < 0, 6x - 1 > 0
= x < 0, x < \(\frac{1}{6}\) (solution)
ase 2 (+, +) = x > 0, 6x - 1 > 0 = x > 0
x > \(\frac{1}{6}\)
ombining solutions in cases (1) and (2)
= x > 0, x < \(\frac{1}{6}\) = 0 < x < \(\frac{1}{6}\)