\(\begin{array}{c|c} \text{Class Interval} & 1 - 5 & 6 - 10 & 11 - 15 & 16 - 20 & 21 - 25 \\ \hline Frequency & 6 & 15 & 20 & 7 & 2\end{array}\) Estimate the median of the frequency distribution above
A. 10\(\frac{1}{2}\) B. 11\(\frac{1}{2}\) C. 12 D. 13
Correct Answer: C
Explanation
Median = L + [\(\frac{\frac{N}{2} - f}{fm}\)]h N = Sum of frequencies L = lower class boundary of median class f = sum of all frequencies below L fm = frequency of modal class and h = class width of median class Median = 11 + [\(\frac{\frac{50}{2} - 21}{20}\)]5 = 11 + (\(\frac{25 - 21}{20}\))5 = 11 + (\(\frac{(4)}{20}\)) 11 + 1 = 12