Simplify \(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)
A. 5√3
B. 6√3
C. 8√3
D. 18√3
Correct Answer: B
Explanation
\(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)
Rearrange = \(\sqrt{48}\) + \(\sqrt{75}\) - \(\frac{9}{\sqrt{3}}\)
= (√16 x √3) + (√25 x √3) - \(\frac{9}{\sqrt{3}}\)
=4√3 + 5√3 - \(\frac{9}{\sqrt{3}}\)
Rationalize \(\to\) 9√3 = \(\frac{9}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\)
= \(\frac{9\sqrt{3}}{\sqrt{9}}\) - \(\frac{9\sqrt{3}}{\sqrt{3}}\)
= 3√3