\(\begin{array}{c|c} x & 2 & 4 & 6 & 8\\ \hline f & 4 & y & 6 & 5 \end{array}\)
If the mean of the above frequency distribution is 5.2, find y
A. 2, 1
B. 1, 2
C. 1, 5
D. 5, 2
Correct Answer: C
Explanation
Mean \(\bar{x}\) = \(\frac{\sum fx}{\sum f}\)
= \(\frac{5.2}{1}\)
= \(\frac{8 + 4y + 36 + 40}{4 + y + 6 + 5}\)
= \(\frac{5.2}{1}\)
= \(\frac{84 + 4y}{15 + y}\)
= 5.2(15 + y)
= 84 + 4y
= 5.2 x 15 + 5.2y
= 84 + 4y
= 78 + 5.2y
= 84 = 4y
= 5.2y - 4y
= 84 - 78
1.2y = 6
y = \(\frac{6}{1.2}\)
= \(\frac{60}{12}\)
= 5