Evaluate \(\lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4}\)
A. 7
B. 2
C. 3
D. 4
Correct Answer: B
Explanation
\(\lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4}\)
\(\frac{(x - 2)(x^{2} + 3x - 2)}{x^{2} - 4} = \frac{(x - 2)(x^{2} + 3x - 2)}{(x - 2)(x + 2)}\)
= \(\frac{(x^{2} + 3x - 2)}{x + 2}\)
\(\therefore \lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4} = \lim \limits_{x \to 2} \frac{x^{2} + 3x - 2}{x + 2}\)
= \(\frac{2^{2} + 3(2) - 2}{2 + 2}\)
= \(\frac{4 + 6 - 2}{4} = 2\)