Explanation
To find \( y \) when \( x = -3 \) for the equation
\[ y = \frac{x}{x-3} + \frac{x}{x+4}, \]
substitute \( x = -3 \) into the equation:
1. Substitute \( x = -3 \) into each term:
\[
\frac{-3}{-3 - 3} + \frac{-3}{-3 + 4}
\]
2. Simplify each term:
For the first term:
\[
\frac{-3}{-6} = \frac{1}{2}
\]
For the second term:
\[
\frac{-3}{1} = -3
\]
3. Add the two terms together:
\[
\frac{1}{2} - 3
\]
To subtract, convert \(-3\) to a fraction with the same denominator:
\[
-3 = -\frac{6}{2}
\]
So:
\[
\frac{1}{2} - \frac{6}{2} = -\frac{5}{2}
\]
Therefore, the value of \( y \) when \( x = -3 \) is:
D. \(-\frac{5}{2}\)