A. \(\frac{\sqrt{8} - \sqrt{3}}{5}\) B. \(\frac{11 - 4\sqrt{6}}{5}\) C. \(\frac{\sqrt{5}}{\sqrt{13}}\) D. \(1\)
Correct Answer: B
Explanation
To simplify the expression \(\frac{\sqrt{8} - \sqrt{3}}{\sqrt{8} + \sqrt{3}}\), follow these steps:
1. Rationalize the denominator by multiplying both the numerator and denominator by the conjugate of the denominator: \[ \frac{\sqrt{8} - \sqrt{3}}{\sqrt{8} + \sqrt{3}} \times \frac{\sqrt{8} - \sqrt{3}}{\sqrt{8} - \sqrt{3}} \]
2. Multiply the numerators and the denominators: \[ \text{Numerator:} \quad (\sqrt{8} - \sqrt{3})(\sqrt{8} - \sqrt{3}) \] \[ \text{Denominator:} \quad (\sqrt{8} + \sqrt{3})(\sqrt{8} - \sqrt{3}) \]