Make \(q\) the subject of the formula: \(\frac{q-r}{t} = \frac{v-q}{v}\).
A. \(q = \frac{v(t+r)}{v+t}\)
B. \(q = \frac{vt+r}{t-v}\)
C. \(q = r(\frac{v-t}{v})\)
D. \(q = \frac{v-q}{v} + \frac{r}{t}\)
Correct Answer: A
Explanation
Let's solve the equation \(\frac{q-r}{t} = \frac{v-q}{v}\) to make \(q\) the subject.
1. Start by cross-multiplying to eliminate the fractions:
\[
v(q - r) = t(v - q)
\]
2. Distribute both sides:
\[
vq - vr = tv - tq
\]
3. Collect all terms involving \(q\) on one side of the equation:
\[
vq + tq = tv + vr
\]
4. Factor out \(q\) from the left side:
\[
q(v + t) = tv + vr
\]
5. Finally, divide both sides by \((v + t)\) to solve for \(q\):
\[
q = \frac{tv + vr}{v + t}
\]
6. Factor out \(v\) from the numerator:
\[
q = \frac{v(t + r)}{v + t}
\]
So, the correct answer is A. \(q = \frac{v(t + r)}{v + t}\).