Explanation
To find the volume of water that can be stored in a hemisphere with a given radius, we use the formula for the volume of a hemisphere:
\[
V = \frac{2}{3} \pi r^3
\]
where \( r \) is the radius of the hemisphere.
Given:
- Radius \( r = 10.5 \, \text{dm} \)
1. Calculate the volume in cubic decimeters (dm³):
\[
V = \frac{2}{3} \pi (10.5)^3
\]
\[
(10.5)^3 = 1157.625
\]
\[
V = \frac{2}{3} \times \pi \times 1157.625
\]
\[
V = \frac{2}{3} \times 3.1416 \times 1157.625
\]
\[
V = 2 \times 3.1416 \times 385.875
\]
\[
V = 2425.5 \, \text{dm}^3
\]
2. Convert the volume from cubic decimeters to liters:
Since \( 1 \, \text{dm}^3 = 1 \, \text{liter} \),
\[
V = 2425.5 \, \text{liters}
\]
The correct answer is:
B. 2425.5 liters