If Tan A = cot B. then A+B = ?
Explanation
To solve the problem, let's use the trigonometric identities:
We know that:
\[
\tan A = \cot B
\]
The cotangent function is the reciprocal of the tangent function:
\[
\cot B = \frac{1}{\tan B}
\]
Thus:
\[
\tan A = \frac{1}{\tan B}
\]
The tangent and cotangent functions are related by the identity:
\[
\tan \theta = \cot (90^\circ - \theta)
\]
So:
\[
\tan A = \cot (90^\circ - A)
\]
Comparing this with:
\[
\tan A = \cot B
\]
We have:
\[
B = 90^\circ - A
\]
Adding \( A \) and \( B \):
\[
A + B = A + (90^\circ - A) = 90^\circ
\]
So, the correct answer is:
C. 90°