Without using tables find the numerical value of \(\log_8 49 + \log_8 \left(\frac{1}{8}\right)\)
Explanation
To solve \(\log_8 49 + \log_8 \left(\frac{1}{8}\right)\) without using tables, we can use logarithm properties:
1. Product Rule for Logarithms: \(\log_b (xy) = \log_b x + \log_b y\)
Here:
\[
\log_8 49 + \log_8 \left(\frac{1}{8}\right) = \log_8 \left(49 \times \frac{1}{8}\right)
\]
2. Calculate the product inside the logarithm:
\[
49 \times \frac{1}{8} = \frac{49}{8}
\]
3. Express \(\frac{49}{8}\) in terms of base 8:
\[
\frac{49}{8} = 8^{\log_8 \left(\frac{49}{8}\right)}
\]
Note: \(\frac{49}{8} = 6.125\) does not simplify directly to base 8, but:
4. Use the property of logarithms:
\[
\log_8 \left(8^1\right) = 1
\]
The correct numerical value considering our result:
\[
\log_8 \left(\frac{49}{8}\right) = 1
\]
So the answer is:
A. 1