If (g(y)) = \(\frac{y - 3}{11}\) + \(\frac{11}{y^2 - 9}\). what is g(y + 3)?
A. \(\frac{y}{11} + \frac{11}{y(y + 6)}\)
B. \(\frac{y}{11} + \frac{11}{y(y + 3)}\)
C. \(\frac{y + 30}{11} + \frac{11}{y(y + 3)}\)
D. \(\frac{y + 3}{11} + \frac{11}{y(y - 6)}\)
Correct Answer: A
Explanation
\(g(y) = \frac{y - 3}{11} + \frac{11}{y^{2} - 9}\)
\(\therefore g(y + 3) = \frac{(y + 3) - 3}{11} + \frac{11}{(y + 3)^{2} - 9}\)
\(g(y + 3) = \frac{y}{11} + \frac{11}{y^{2} + 6y + 9 - 9}\)
\(g(y + 3) = \frac{y}{11} + \frac{11}{y^{2} + 6y}\)
= \(\frac{y}{11} + \frac{11}{y(y + 6)}\)