If P = \(\frac{2}{3}\) (\(\frac{1 - r^2}{n^2}\)), find n when r = \(\frac{1}{3}\) and p = 1
A. \(\frac{3}{2}\) B. \(\frac{1}{3}\) C. 3 D. \(\frac{2}{3}\)
Correct Answer: D
Explanation
If P = \(\frac{2}{3}\) (\(\frac{1 - r^2}{n^2}\)), find n when r = \(\frac{1}{3}\) and p = 1 p = \(\frac{2(1 - r^2)}{3n^2}\) when r = \(\frac{1}{3}\) and p = 1 1 = \(\frac{2}{3}\) \(\frac{(1 - (\frac{1}{3})^2)}{n^2}\) n2 = \(\frac{2(3 - 1)}{3 \times 3}\) n2 = \(\frac{2 \times 2}{3 \times 3}\) = \(\frac{4}{9}\) n = \(\frac{4}{9}\) = \(\frac{2}{3}\)