Simplify \((\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}}\)
A. \(\frac{\sqrt{3}}{\sqrt{5}}\)
B. \(\frac{2 \sqrt{3}}{7}\)
C. -2
D. -1
Correct Answer: D
Explanation
\((\frac{1}{\sqrt{5} +Â \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}}\)
\(\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}\)
\(\frac{(\sqrt{5} - \sqrt{3}) - (\sqrt{5} + \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})}\)
= \(\frac{\sqrt{5} - \sqrt{3} - \sqrt{5} - \sqrt{3}}{5 - \sqrt{15} + \sqrt{15} - 3}\)
= \(\frac{-2\sqrt{3}}{2}\)
= \(- \sqrt{3}\)
\(\therefore (\frac{1}{\sqrt{5} +Â \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}} = - \sqrt{3} \times \frac{1}{\sqrt{3}}\)
= \(-1\)