Solve the following equation \(\frac{2}{2r - 1}\) - \(\frac{5}{3}\) = \(\frac{1}{r + 2}\)
A. (\(\frac{5}{2}\), 1) B. (5, -4) C. (2, 1) D. (1, \(\frac{-5}{2}\)) E. (\(\frac{-5}{2}\), 1) Correct Answer: DExplanation\(\frac{2}{2r - 1}\) - \(\frac{5}{3}\) = \(\frac{1}{r + 2}\) \(\frac{2}{2r - 1}\) - \(\frac{1}{r + 2}\) = \(\frac{5}{3}\) \(\frac{2r + 4 - 2r + 1}{2r - 1 (r + 2)}\) = \(\frac{5}{3}\) \(\frac{5}{(2r + 1)(r + 2)}\) = \(\frac{5}{3}\) 5(2r - 1)(r + 2) = 15 (10r - 5)(r + 2) = 15 10r2 + 20r - 5r - 10 = 15 10r2 + 15r = 25 10r2 + 15r - 25 = 0 2r2 + 3r - 5 = 0 (2r2 + 5r)(2r + 5) = r(2r + 5) - 1(2r + 5) (r - 1)(2r + 5) = 0 r = 1 or \(\frac{-5}{2}\) |