Make T the subject of the equation \(\frac{av}{1 - v}\) = \(\sqrt{\frac{2v + T}{a + 2T}}\)
A. T = \(\frac{3av}{1 - v}\)
B. T = \(\frac{1 + v}{2a^2v^3}\)
C. T = \(\frac{2v(1 - v)^3 - a^4v^3}{2a^3v^3 + (1 - v)^2}\)
D. \(\frac{2v(1 - v)^3 - a^4 v^3}{2a^3v^ 3 - (1 - v)^3}\)
Correct Answer: D
Explanation
\(\frac{av}{1 - v}\) = \(\sqrt{\frac{2v + T}{a + 2T}}\)
\(\frac{(av)^3}{(1 - v)^3}\) = \(\frac{2v + T}{a + 2T}\)
\(\frac{a^3v^3}{(1^3 - v)^3}\) = \(\frac{2v + T}{a + 2T}\)
= \(\frac{2v(1 - v)^3 - a^4 v^3}{2a^3v^ 3 - (1 - v)^3}\)