The solution to the simultaneous equations 3x + 5y = 4, 4x + 3y = 5 is
A. (\(\frac{-13}{11}, \frac{1}{11}\)) B. (\(\frac{13}{11}, \frac{1}{11}\)) C. (\(\frac{13}{11}, \frac{-1}{11}\)) D. (\(\frac{11}{13}, \frac{1}{11}\)) E. (13, 11)
Correct Answer: B
Explanation
3x + 5y = 4, 4x + 3y = 5 3x + 5y = 4 x 4 4x + 3y = 5 x 3 12x + 20y = 16.....(i) 12x + 9y = 15.......(ii) subtract eqn.(ii) from eqn.(i) 11y = 1 y = \(\frac{1}{11}\) 12x + 20 x \(\frac{1}{11}\) = 16 12x = \(\frac{156}{11}\) x = \(\frac{13}{11}\) = \(\frac{13}{11}, \frac{1}{11}\)