If \(\frac{3e + f}{3f - e}\) = \(\frac{2}{5}\), find the value of \(\frac{e + 3f}{f - 3e}\)
A. \(\frac{5}{2}\)
B. 1
C. \(\frac{26}{7}\)
D. \(\frac{1}{3}\)
Correct Answer: C
Explanation
\(\frac{3e + f}{3f - e}\) = \(\frac{2}{5}\)
= 3e + f
= 2 x 1
\(\frac{-e + 3f}{3e - f}\) = \(\frac{5 \times 3}{2}\)
= \(\frac{3e + 9f = 15}{10f = 17}\)
f = \(\frac{17}{10}\)
Sub. for equ. (1)
3e + \(\frac{17}{10}\) = 2
3e = 2 - \(\frac{17}{10}\)
\(\frac{3}{10}\)
e = \(\frac{3}{10}\) x \(\frac{1}{3}\)
= \(\frac{1}{10}\)
= e + 3f = \(\frac{1}{10}\) + \(\frac{3 \times}{10}\) = \(\frac{52}{10}\)
f - 3e = \(\frac{17}{10}\) - 3 x \(\frac{1}{10}\)
= \(\frac{14}{10}\)
= \(\frac{52}{10}\) x \(\frac{10}{14}\)
= \(\frac{26}{7}\)