What is the common ratio of the G.P. \((\sqrt{10} + \sqrt{5}) + (\sqrt{10} + 2\sqrt{5}) + ... \)?
A. \(\sqrt{2}\)
B. \(\sqrt{5}\)
C. 3
D. 5
Correct Answer: A
Explanation
Common ratio r of the G.P is
\(r = \frac{T_n + 1}{T_n} = \frac{T_2}{T_1}\)
\(r = \frac{\sqrt{10} + 2\sqrt{5}}{\sqrt{10} + \sqrt{5}}\)
\(r = \frac{\sqrt{10} + 2\sqrt{5}}{\sqrt{10} + \sqrt{5}} \times \frac{\sqrt{10} - \sqrt{5}}{\sqrt{10} - \sqrt{5}} \)
\( = \frac{(\sqrt{10})(\sqrt{10}) + (\sqrt{10})(-\sqrt{5}) + (2\sqrt{5})(\sqrt{10}) + (2\sqrt{5})(-\sqrt{5})}{(\sqrt{10})^2 - (\sqrt{5})^2}\)
\(\frac{10 - \sqrt{50} + 2\sqrt{50} - 10}{10 - 5}\)
\(\frac{\sqrt{50}}{5}\)
\(\frac{\sqrt{25 \times 2}}{5}\)
\(\frac{5\sqrt{2}}{5}\)
\(\sqrt{2}\)