(a) \(h = \frac{mt}{d(m + p)}\)
\(dh(m + p) = mt\)
\(dhm + dhp = mt \implies dhp = mt - dhm\)
\(dhp = m(t - dh) \implies m = \frac{dhp}{t - dh}\)
(b)
In the diagram above, < WXM = 90° (angle in a semicircle)
< WMX = 180° - (90° + 48°)
= 42°
< XMZ = 180° - 42° (angles on a straight line)
= 138°
< WYZ = 180° - 138° (opp. angles of a cyclic quadrilateral)
= 42°
(c)
\(\star\) | 1 | 3 | 5 | 6 |
1 | 4 | 6 | 1 | 2 |
3 | 6 | 1 | 3 | 4 |
5 | 1 | 3 | 5 | 6 |
6 | 2 | 4 | 6 | 0 |
(ii) From the table, the truth set of :
(I) \(3 \star n = 3; n = {5}\)
(II) \(n \star n = 3; n = { }\)