Make u the subject of formula, E = \(\frac{m}{2g}\)(v2 - u2)
A. u = \(\sqrt{v^2 - \frac{2Eg}{m}}\) B. u = \(\sqrt{\frac{v^2}{m} - \frac{2Eg}{4}}\) C. u = \(\sqrt{v- \frac{2Eg}{m}}\) D. u = \(\sqrt{\frac{2v^2Eg}{m}}\)
Correct Answer: A
Explanation
E = \(\frac{m}{2g}\)(v2 - u2) multiply both sides by 2g 2Eg = 2g (\(\frac{M}{2g} (V^2 - U^2)\) 2Eg = m(V2 - U2) 2Eg - mV2 - mU2 mU2 = mV2 - 2Eg divide both sides by m \(\frac{mU^2}{m} = \frac{mV^2 - 2Eg}{m}\) U2 = \(\frac{mV^2 - 2Eg}{m}\) = \(\frac{mV^2}{m} - \frac{2Eg}{m}\) U2 = V2 - \(\frac{2Eg}{m}\) U = \(\sqrt{V^2 - \frac{2Eg}{m}}\)