(a) In the diagram, PQRST is a quadrilateral. PT // QS, < PTQ = 42°, < TSQ = 38° and < QSR = 30°. If < QTS = x and < POT = y, find: (i) x ; (ii) y. (b) In the diagram, PQRS is a circle centre O. If POQ = 150°, < QSR = 40° and < SQP = 45°, calculate < RQS.
Explanation
(a)(i) < PTS = 38° (alternate angle) 42° + x + 38° = 180° (angles on a straight line) 80° + x = 180° x = 180° - 80° = 100° (ii) < SQT = 42° (alternate angle) < SQR = 60° (sum of angles in a triangle) y + 42° + 60° = 180° (angle on a straight line) y + 102° = 180° y = 180° - 102° = 78° (b) (angle at the centre is twicw angle at the circumference) (opposite angles in a cyclic quad are supplementary) (sum of angle in a triangle) (sum of angle in a triangle) =