(a) Given that \((\sqrt{3} - 5\sqrt{2})(\sqrt{3} + \sqrt{2}) = a + b\sqrt{6}\), find a and b.
(b) If \(\frac{2^{1 - y} \times 2^{y - 1}}{2^{y + 2}} = 8^{2 - 3y}\), find y.
Show Answer Show Explanation Explanation (a) \((\sqrt{3} - 5\sqrt{2})(\sqrt{3} + \sqrt{2}) = \sqrt{3 \times 3} + \sqrt{3 \times 2} - 5\sqrt{2 \times 3} - 5\sqrt{2 \times 2}\) = \(3 + \sqrt{6} - 5\sqrt{6} - 5(2)\) = \(-7 - 4\sqrt{6}\) \(\therefore\) a = -7 and b = -4. (b) \(\frac{2^{1 - y} \times 2^{y - 1}}{2^{y + 2}} = 8^{2 - 3y}\) \(\frac{2^{1 - y + y - 1}}{2^{y + 2}} = (2^{3})^{2 - 3y}\) \(2^{0 - (y + 2)} = 2^{6 - 9y} \implies 2^{- y - 2} = 2^{6 - 9y}\) \(- y - 2 = 6 - 9y \implies - y + 9y = 6 + 2\) \(8y = 8 \implies y = 1\).