(a) Without using mathematical table or calculator, evaluate : \(\sqrt{\frac{0.18 \times 12.5}{0.05 \times 0.2}}\).
(b) Simplify : \(\frac{8 - 4\sqrt{18}}{\sqrt{50}}\).
(c) x, y and z are related such that x varies directly as the cube of y and inversely as the square of z. If x = 108 when y = 3 and z = 4, find z when x = 4000 and y = 10.
Show Answer Show Explanation Explanation (a) \(\sqrt{\frac{0.18 \times 12.5}{0.05 \times 0.2}}\) \(\frac{0.18 \times 12.5}{0.05 \times 0.2} = \frac{18 \times 10^{-2} \times 125 \times 10^{-1}}{5 \times 10^{-2} \times 2 \times 10^{-1}}\) = \(9 \times 25 \times 10^{-3 - (-3)}\) = \(9 \times 25\) = \(225\) \(\therefore \sqrt{\frac{0.18 \times 12.5}{0.05 \times 0.2}} = \sqrt{225}\) = \(15\). (b) \(\frac{8 - 4\sqrt{18}}{\sqrt{50}}\) \(\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}\) \(\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}\) \(\frac{8 - 4(3\sqrt{2})}{5\sqrt{2}} = \frac{8 - 12\sqrt{2}}{5\sqrt{2}}\) Rationalising, we have = \(\frac{8 - 12\sqrt{2}}{5\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}\) = \(\frac{8\sqrt{2} - 24}{10}\) = \(0.8\sqrt{2} - 2.4\) = \(-2.4 + 0.8\sqrt{2}\) (c) \(x \propto \frac{y^{3}}{z^{2}}\) \(\implies x = \frac{ky^{3}}{z^{2}}\) \(108 = \frac{k \times 3^{3}}{4^{2}}\) \(k = \frac{108 \times 16}{27}\) \(k = 64\) \(\therefore x = \frac{64y^{3}}{z^{2}}\) \(\therefore 4000 = \frac{64 \times 10^{3}}{z^{2}}\) \(4 = \frac{64}{z^{2}}\) \(z^{2} = \frac{64}{4} = 16\) \(z = \sqrt{16} = \pm 4\)