In the diagram, A, B, C and D are points on the circumference of a circle. XY is a tangent at A. Find : (i) < CAX ; (ii) < ABY. (b) If (m + 1) and (m - 3) are factors of \(m^{2} - km + c\), find the values of k and c.
Explanation
(a) \(< ADB = < ACB = 20°\) (Angle in the same segment). In \(\Delta ACY\), \(\hat{C} = < ACB\) (i) \(\hat{C} + \hat{A} + \hat{Y} = 180°\) \(20° + \hat{A} + 60° = 180°\) \(\hat{A} = 180° - 80° = 100°\) \(< CAY = \hat{A} = 100°\) \(< CAX = 180° - 100° = 80°\) (ii) In \(\Delta ACB\), \(\hat{B} = \hat{C} = \frac{180° - 20°}{2} \) = \(\frac{160°}{2}\) = \(80°\) In \(\Delta ABY\), \(< ABY = \hat{B} = 180° - 80°\) = \(100°\) (b) \((m + 1)(m - 3) \equiv m^{2} - km + c\) \(m^{2} - 3m + m - 3 = m^{2} - 2m - 3\) \(m^{2} - 2m - 3 \equiv m^{2} - km + c\) \(\implies k = 2 ; c = -3\)