A car travels a certain distance taking \(7 \mathrm{hrs}\) in forward journey. During the return journey, the speed is increased by \(12 \mathrm{~km} / \mathrm{hr}\) and the car takes \(5 \mathrm{hrs}\) to reach the destination. What is the distance travelled in one way?
A. \(210 \mathrm{kms}\) B. \(30 \mathrm{kms}\) C. \(20 \mathrm{kms}\) D. \(60 \mathrm{kms}\) E. None of These
Correct Answer: A
Explanation
For Forward Journey: Speed \(=\mathrm{S} \mathrm{kmph}\) Time \(=7 \mathrm{Hrs}\).istance \(=\mathrm{D} \mathrm{kms}\)istance \(=(\) Speed \() \times(\) Time \()\) \(\mathrm{D}=7 \mathrm{~S}\) (i)or Return Journey Speed \(=(\mathrm{S}+12) \mathrm{kmph}\) Time \(=5 \mathrm{hrs}\).istance \(=\mathrm{D}\) kmsistance \(=(\) Speed \() \times(\) Time \()\) \(\mathrm{D}=(\mathrm{S}+12) \times 5\)istance travelled is same, So, \(7 S=5 S+60\) \(\mathrm{S}=30 \mathrm{kmph}\)istance \(=30 \times 7=210 \mathrm{kms}\)