In a \(100 \mathrm{~m}\) race, A can beat B by \(25 \mathrm{~m}\) and \(B\) can beat \(C\) by \(4 \mathrm{~m}\). In the same race, A can beat \(C\) by?
Explanation
When A travels \(100 \mathrm{~m}, \mathrm{~B}\) travels \(75 \mathrm{~m}\). Hence \(\mathrm{A}: \mathrm{B}=100: 75\)
When B travels \(100 \mathrm{~m}\), C travels \(96 \mathrm{~m}\). Hence \(B: C=100: 96\)
When B Travels \(75 \mathrm{~m}, \mathrm{C}\) travels \((96 \times 75) / 100=72 \mathrm{~m}\)
Hence \(B: C=75: 72\).
Therefore, A:B:C \(=100: 75: 72\).So, when A Travels \(100 \mathrm{~m}, \mathrm{C}\) travels \(72 \mathrm{~m}\).
Therefore, \(A\) beat \(C\) by \(28 \mathrm{~m}\)