In an experiment, lead shot contained in a vertical cardboard cylinder falls through \(100 \mathrm{~cm}\) when the cylinder is inverteD. Calculate the rise in temperature caused by 100 such inversions. [specific heat capacity of lead \(=130 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}\); \(\mathrm{g}\) \(=10 \mathrm{~ms}^{-2}\) ]
A. \(3.3 \mathrm{~K}\) B. \(4.4 \mathrm{~K}\) C. \(5.5\) D. \(7.7 \mathrm{~K}\)
Correct Answer: D
Explanation
given: \(\mathrm{h}=100 \mathrm{~cm}=1 \mathrm{~m}\) \(\mathrm{n}=100\) analysis: total potential energy \(=\) heat energy \(=\mathrm{n} \times \mathrm{mgh}=\mathrm{mc} \Delta \theta\) \(100 \times m \times 10 \times 1=m \times 130 \times \Delta \theta\) \(\frac{1000}{130}=\Delta \theta\) \(\Delta \theta=7.67 \simeq 7.7 \mathrm{~K}\)